描述 | MOSFET N-CH 600V 11A TO-247AC | FET 型 | MOSFET N 通道,金属氧化物 |
---|---|---|---|
FET 特点 | 标准型 | 漏极至源极电压(Vdss) | 600V |
电流 - 连续漏极(Id) @ 25° C | 11A | 开态Rds(最大)@ Id, Vgs @ 25° C | 600 毫欧 @ 6A,10V |
Id 时的 Vgs(th)(最大) | 4V @ 250?A | 闸电荷(Qg) @ Vgs | 140nC @ 10V |
输入电容 (Ciss) @ Vds | 2700pF @ 25V | 功率 - 最大 | 180W |
安装类型 | 通孔 | 封装/外壳 | TO-247-3 |
供应商设备封装 | TO-247-3 | 包装 | 管件 |
其它名称 | *IRFPC50 |
有垂直导电性。由于漏极是从芯片的背面引出,所以id不是沿芯片水平流动,而是自重掺杂n+区(源极s)出发,经过p沟道流入轻掺杂n-漂移区,最后垂直向下到达漏极d。电流方向如图中箭头所示,因为流通截面积增大,所以能通过大电流。由于在栅极与芯片之间有二氧化硅绝缘层,因此它仍属于绝缘栅型mos场效应管。 国内生产vmos场效应管的主要厂家有877厂、天津半导体器件四厂、杭州电子管厂等,典型产品有vn401、vn672、vmpt2等。表1列出六种vmos管的主要参数。其中,irfpc50的外型如右上图所示。 vmos场效应管的检测方法(1).判定栅极g 将万用表拨至r×1k档分别测量三个管脚之间的电阻。若发现某脚与其字两脚的电阻均呈无穷大,并且交换表笔后仍为无穷大,则证明此脚为g极,因为它和另外两个管脚是绝缘的。(2).判定源极s、漏极d 由图1可见,在源-漏之间有一个pn结,因此根据pn结正、反向电阻存在差异,可识别s极与d极。用交换表笔法测两次电阻,其中电阻值较低(一般为几千欧至十几千欧)的一次为正向电阻,此时黑表笔的是s极,红表笔接d极。(3).测量漏-源通态 ...
个管脚是绝缘的。(2).判定源极s、漏极d 由图1可见,在源-漏之间有一个pn结,因此根据pn结正、反向电阻存在差异,可识别s极与d极。用交换表笔法测两次电阻,其中电阻值较低(一般为几千欧至十几千欧)的一次为正向电阻,此时黑表笔的是s极,红表笔接d极。(3).测量漏-源通态电阻rds(on) 将g-s极短路,选择万用表的r×1档,黑表笔接s极,红表笔接d极,阻值应为几欧至十几欧。由于测试条件不同,测出的rds(on)值比手册中给出的典型值要高一些。例如用500型万用表r×1档实测一只irfpc50型vmos管,rds(on)=3.2w,大于0.58w(典型值)。(4).检查跨导 将万用表置于r×1k(或r×100)档,红表笔接s极,黑表笔接d极,手持螺丝刀去碰触栅极,表针应有明显偏转,偏转愈大,管子的跨导愈高。注意事项:(1)vmos管亦分n沟道管与p沟道管,但绝大多数产品属于n沟道管。对于p沟道管,测量时应交换表笔的位置。(2)有少数vmos管在g-s之间并有保护二极管,本检测方法中的1、2项不再适用。(3)目前市场上还有一种vmos管功率模块,专供交流电机调速器、逆变器使用。例如 ...
2.判定源极s、漏极d 由图1可见,在源-漏之间有一个pn结,因此根据pn结正、反向电阻存在差异,可识别s极与d极。用交换表笔法测两次电阻,其中电阻值较低(一般为几千欧至十几千欧)的一次为正向电阻,此时黑表笔的是s极,红表笔接d极。 3.测量漏-源通态电阻rds(on) 将g-s极短路,选择万用表的r×1档,黑表笔接s极,红表笔接d极,阻值应为几欧至十几欧。 由于测试条件不同,测出的rds(on)值比手册中给出的典型值要高一些。例如用500型万用表r×1档实测一只irfpc50型vmos管,rds(on)=3.2w,大于0.58w(典型值)。 4.检查跨导 将万用表置于r×1k(或r×100)档,红表笔接s极,黑表笔接d极,手持螺丝刀去碰触栅极,表针应有明显偏转,偏转愈大,管子的跨导愈高。 注意事项: (1)vmos管亦分n沟道管与p沟道管,但绝大多数产品属于n沟道管。对于p沟道管,测量时应交换表笔的位置。 (2)有少数vmos管在g-s之间并有保护二极管,本检测方法中的1、2项不再适用。 (3)目前市场上还有一种vmos管功率模块 ...