您的位置:维库电子商城 > 半导体 > 分离式半导体 > tn0201t

TN0201T

  • 制造商:-
  • 晶体管极性:N-Channel
  • 汲极/源极击穿电压:20 V
  • 闸/源击穿电压:+/- 20 V
  • 漏极连续电流:0.39 A
产品属性
描述MOSFET 20V 0.39A电阻汲极/源极 RDS(导通)1000 mOhms
配置Single最大工作温度+ 150 C
安装风格SMD/SMT封装 / 箱体TO-236-3
下降时间10 ns最小工作温度- 55 C
功率耗散350 mW上升时间10 ns
工厂包装数量1000典型关闭延迟时间12 ns

“TN0201T”电子资讯

  • 简易锂电池保护IC测试电路的设计

    要用到的电流只有两个级别,一个是零点几个微安,一个是几十微安,因此一般要求能提供微安级以下的电流。另外,电源的稳定度对整个ic测试参数的影响很大,因此,在测试时尽量使用稳定性好的电源。 本设计的特点 本设计有以下三个特点。 ● 在测试ic过充、过放和过流的延迟时利用开关将电阻短路或开路来实现电路电源的突变,并且利用示波器同时抓电源和oc、od跳变波形图来测量延迟时间。 ● 为了实现测试oc、od高、低电平时向引脚吸、灌电流,本电路用mosfet做了两个简单的微电流源,选用的mosfet型号为tn0201t,利用栅级电压控制漏、源级电流,以漏、源级电流为电流源,精度可以达到0.1μa,基本可以满足测试的需要。 ● 测试过流保护电压时,即测试使od引脚从高电平跳变为低电平的cs引脚电压。短流保护电压远高于过流保护电压,当电压达到过流保护电压时电路已经发生跳变,od输出一直为低电平,因此常规方法无法测试出短流保护电压,于是,本文采用了一种间接的近似测试方法。ic对过电流保护的延迟时间大概为几个到十几个毫秒,而短流延迟时间则大概为十几个微秒,因此可以根据过流延迟时间与短流延迟时间的不同来近似测试短流保护 ...

  • 如何延长基于微控制器设计的电池寿命

    两个级别,一个是零点几个微安,一个是几十微安,因此一般要求能提供微安级以下的电流。另外,电源的稳定度对整个ic测试参数的影响很大,因此,在测试时尽量使用稳定性好的电源。 本设计的特点 本设计有以下三个特点。 ● 在测试ic过充、过放和过流的延迟时利用开关将电阻短路或开路来实现电路电源的突变,并且利用示波器同时抓电源和oc、od跳变波形图来测量延迟时间。 ● 为了实现测试oc、od高、低电平时向引脚吸、灌电流,本电路用mosfet做了两个简单的微电流源,选用的mosfet型号为tn0201t,利用栅级电压控制漏、源级电流,以漏、源级电流为电流源,精度可以达到0.1μa,基本可以满足测试的需要。 ● 测试过流保护电压时,即测试使od引脚从高电平跳变为低电平的cs引脚电压。短流保护电压远高于过流保护电压,当电压达到过流保护电压时电路已经发生跳变,od输出一直为低电平,因此常规方法无法测试出短流保护电压,于是,本文采用了一种间接的近似测试方法。ic对过电流保护的延迟时间大概为几个到十几个毫秒,而短流延迟时间则大概为十几个微秒,因此可以根据过流延迟时间与短流延迟时间的不同来近似测试短流保 ...

“TN0201T”技术资料

  • 简易锂电池保护IC测试电路的设计

    到的电流只有两个级别,一个是零点几个微安,一个是几十微安,因此一般要求能提供微安级以下的电流。另外,电源的稳定度对整个ic测试参数的影响很大,因此,在测试时尽量使用稳定性好的电源。 本设计的特点 本设计有以下三个特点。 ● 在测试ic过充、过放和过流的延迟时利用开关将电阻短路或开路来实现电路电源的突变,并且利用示波器同时抓电源和oc、od跳变波形图来测量延迟时间。 ● 为了实现测试oc、od高、低电平时向引脚吸、灌电流,本电路用mosfet做了两个简单的微电流源,选用的mosfet型号为tn0201t,利用栅级电压控制漏、源级电流,以漏、源级电流为电流源,精度可以达到0.1μa,基本可以满足测试的需要。 ● 测试过流保护电压时,即测试使od引脚从高电平跳变为低电平的cs引脚电压。短流保护电压远高于过流保护电压,当电压达到过流保护电压时电路已经发生跳变,od输出一直为低电平,因此常规方法无法测试出短流保护电压,于是,本文采用了一种间接的近似测试方法。ic对过电流保护的延迟时间大概为几个到十几个毫秒,而短流延迟时间则大概为十几个微秒,因此可以根据过流延迟时间与短流延迟时间的不同来近似测试短流保 ...

  • 简易锂电池保护IC测试电路的设计(图)

    到的电流只有两个级别,一个是零点几个微安,一个是几十微安,因此一般要求能提供微安级以下的电流。另外,电源的稳定度对整个ic测试参数的影响很大,因此,在测试时尽量使用稳定性好的电源。 本设计的特点 本设计有以下三个特点。 ● 在测试ic过充、过放和过流的延迟时利用开关将电阻短路或开路来实现电路电源的突变,并且利用示波器同时抓电源和oc、od跳变波形图来测量延迟时间。 ● 为了实现测试oc、od高、低电平时向引脚吸、灌电流,本电路用mosfet做了两个简单的微电流源,选用的mosfet型号为tn0201t,利用栅级电压控制漏、源级电流,以漏、源级电流为电流源,精度可以达到0.1μa,基本可以满足测试的需要。 ● 测试过流保护电压时,即测试使od引脚从高电平跳变为低电平的cs引脚电压。短流保护电压远高于过流保护电压,当电压达到过流保护电压时电路已经发生跳变,od输出一直为低电平,因此常规方法无法测试出短流保护电压,于是,本文采用了一种间接的近似测试方法。ic对过电流保护的延迟时间大概为几个到十几个毫秒,而短流延迟时间则大概为十几个微秒,因此可以根据过流延迟时间与短流延迟时间的不同来近似测试短流保 ...

  • 便携式设备的电池保护IC测试电路的设计

    到的电流只有两个级别,一个是零点几个微安,一个是几十微安,因此一般要求能提供微安级以下的电流。另外,电源的稳定度对整个ic测试参数的影响很大,因此,在测试时尽量使用稳定性好的电源。 本设计的特点 本设计有以下三个特点。 ● 在测试ic过充、过放和过流的延迟时利用开关将电阻短路或开路来实现电路电源的突变,并且利用示波器同时抓电源和oc、od跳变波形图来测量延迟时间。 ● 为了实现测试oc、od高、低电平时向引脚吸、灌电流,本电路用mosfet做了两个简单的微电流源,选用的mosfet型号为tn0201t,利用栅级电压控制漏、源级电流,以漏、源级电流为电流源,精度可以达到0.1μa,基本可以满足测试的需要。 ● 测试过流保护电压时,即测试使od引脚从高电平跳变为低电平的cs引脚电压。短流保护电压远高于过流保护电压,当电压达到过流保护电压时电路已经发生跳变,od输出一直为低电平,因此常规方法无法测试出短流保护电压,于是,本文采用了一种间接的近似测试方法。ic对过电流保护的延迟时间大概为几个到十几个毫秒,而短流延迟时间则大概为十几个微秒,因此可以根据过流延迟时间与短流延迟时间的不同来近似测试短流保 ...

tn0201t的相关型号: